

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	cmipdata 0.6 documentation

Welcome to the cmipdata documentation!

 [https://zenodo.org/badge/latestdoi/16109/swartn/cmipdata]cmipdata is a python package for preprocessing large ensembles of climate
model data in standardized NetCDF files, such as those used in the Coupled Model
Intercomparison Project (CMIP). The primary usage is to process
the raw netCDF data from many models/realizations/experiments into a useful form
for further analysis (e.g. by time-joining or slicing, remapping, averaging etc).
cmipdata is the python wrapper that intelligently interfaces with the ensemble
of model data, while the underlying data processing is done efficiently and
transparently using Climate Data Operators (cdo) [https://code.zmaw.de/projects/cdo]. Limited functionality for loading processed
data into numpy [http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103]
arrays and making basic plots is also provided.

Contents:

	Quickstart

	Examples

	The cmipdata API

Contributors

Neil Swart, CCCma, Environment Canada: Neil.Swart@canada.ca

David Fallis: davidwfallis@gmail.com

The source code is at https://github.com/swartn/cmipdata.
Pull requests and comments are welcome.

LICENSE

See the LICENSE.txt file in the cmipdata package. cmipdata is distributed
under the GNU General Public License version 2, and the Open Government
License - Canada (http://data.gc.ca/eng/open-government-licence-canada)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

Quickstart

Installing

You can install cmipdata with pip from pypi:

pip install cmipdata

or the latest version directly from github

pip install git+https://github.com/swartn/cmipdata.git

cmipdata has primarily been developed and tested within the
anaconda [http://docs.continuum.io/anaconda/index.html] python distribution on
Linux x86/x64 and Mac OSX. Windows is not supported.

You can (should) do this inside a virtual environment. In that case it will work
without root privileges. If you are using anaconda see
http://conda.pydata.org/docs/faq.html#env.

Dependencies

The external package Climate Data Operators (cdo) [https://code.zmaw.de/projects/cdo] v1.6 or later
is required. Python dependencies are handled by pip.

Using cmipdata

After a successful installation, you can import cmipdata as you would any other
package in python:

import cmipdata as cd

The next step is to create an Ensemble. Ensemble objects are the
structures used in cmipdata to organize climate model data. The assumption is that
you have some CMIP-like netCDF model data on your local disk (cmipdata does not
facillitate downloading data). For this example we have several hundred CMIP5
sea-ice concentration files in our directory, downloaded from the ESGF. To create
an ensemble object, simple use mkensemble(), specifing the filepattern to
match:

 In [2]: ens = cd.mkensemble('sic_OImon*')
 This ensemble contains:
 49 models
 49 realizations
 1 experiments
 1 variables
 279 associated files

For more details use ens.fulldetails()

The printout tells us some details about the data in our new ensemble. It consists
of 49 models, 49 realizations, 1 experiment and 1 variable, all of which are also
objects in the organizational paradigm of cmipdata (see The cmipdata API). There
are many more files than model or realizations, because for some models the
experiment is broken up into multiple files, each representing a time-slice. In
this example there is only one experiment (historical), but there could be many
(if we had files for the RCPs experiments too). cmipdata provided the ability to
join these multiple time-slice files together, and perform a host of other
elaborate processing.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

Examples

	Concatenate model time-slices

	Concatenate experiments

	remap

	Zonal mean

	Time slice

	Custom cdo command

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

Concatenate model time-slices

In this example we have the surface temperature files for HadCM3 in our directory,
which are provided in six time-slices for the historical experiment, as the files:

	ts_Amon_HadCM3_historical_r1i1p1_185912-188411.nc

	ts_Amon_HadCM3_historical_r1i1p1_188412-190911.nc

	ts_Amon_HadCM3_historical_r1i1p1_190912-193411.nc

	ts_Amon_HadCM3_historical_r1i1p1_193412-195911.nc

	ts_Amon_HadCM3_historical_r1i1p1_195912-198411.nc

	ts_Amon_HadCM3_historical_r1i1p1_198412-200512.nc

To join them we can use the cat_exp_slices() function from cmipdata:

import cmipdata as cd
ens = cd.mkensemble('ts_Amon_HadCM3*')
ens = cd.cat_exp_slices(ens)

The result is one unified file in our directory, which has been appropriately named.
By default the individual time-slice fields will be deleted, and only
the joined file is left in our directory. We can change this by passing the
delete=False option to cat_exp_slices(). We were also returned an updated
ensemble object, the structure of which we can view as follows:

ens.fulldetails()

HadCM3:
 historical
 r1i1p1
 ts
 ts_Amon_HadCM3_historical_r1i1p1_185912-200512.nc

Note that the joined file has been named in such a way that the start and end dates
cover the full range of the input files.

This example shows only one model, but the method works equally well for a large
ensemble consisting of multple models, each with multiple realizations and hundreds
of files. For example, using:

ens = cd.mkensemble('ts_Amon_*')

would build an ensemble consisting of all files in the present directory starting
with ts_Amon, and join_exp_slices would, on a per-realization basis, do the
joining, when necessary.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

Concatenate experiments

The CMIP5 experimental design consisted of various experiments. Sometimes it is
desirable to time-join experiments, for example, the historical and RCP4.5
experiments can be join together for each realization from each model to provide a
continuous time-series that runs from 1871 to 2100. The
cat_experiments() function provides this functionality. In this
example we join the historical and RCP4.5 sea-ice extent fields for many models and
realizations:

import cmipdata as cd

ens = cd.mkensemble('sic_OImon*')

 This ensemble contains:
 49 models
 369 realizations
 2 experiments
 1 variables
 1642 associated files

 For more details use ens.fulldetails()

ens_joined = cd.cat_experiments(ens, 'sic', 'historical', 'rcp45')

This operation takes some time, prints out progress along the way, and returns an
updated ensemble. By default the input files will be deleted, and only the joined
files will remain in our directory.
cat_experiments() takes care of doing
joining of multiple time-slices within experiments, as well as joining the two
experiments together. After this operation the number of files have been reduced,
due to joining. The number of models or realizations in the returned ensemble may
also be lower, because only models/realizations that have both a historical and
RCP4.5 experiment available are retained. prints this information out for us:

Models deleted from ensemble (missing one experiment completely):

 Model Experiment

 CESM1-FASTCHEM historical
 CESM1-CAM5-1-FV2 historical
 CNRM-CM5-2 historical
 MPI-ESM-P historical
 CMCC-CESM historical
 MRI-ESM1 historical

Realizations deleted (missing from one experiment):

 Model Realizations

 IPSL-CM5A-LR r6i1p1 r5i1p1
 bcc-csm1-1-m r2i1p1 r3i1p1
 GFDL-CM3 r2i1p1 r4i1p1
 ACCESS1-0 r2i1p1
 CNRM-CM5 r7i1p1 r9i1p1 r2i1p1 r10i1p1 r4i1p1 r3i1p1 r6i1p1 r5i1p1
 r8i1p1
 GISS-E2-H r6i1p1 r6i1p3
 FGOALS-g2 r2i1p1 r4i1p1 r3i1p1 r5i1p1
 ACCESS1-3 r2i1p1 r3i1p1
 CCSM4 r1i2p1 r1i2p2
 HadGEM2-ES r5i1p1
 GISS-E2-R r1i1p128 r1i1p122 r1i1p121 r1i1p126 r1i1p127 r1i1p124
 r1i1p125 r6i1p2
 HadGEM2-CC r2i1p1 r3i1p1
 MIROC-ESM r2i1p1 r3i1p1
 EC-EARTH r5i1p1
 MRI-CGCM3 r4i1p2 r2i1p1 r3i1p1 r5i1p2
 NorESM1-M r2i1p1 r3i1p1
 bcc-csm1-1 r2i1p1 r3i1p1
 CESM1-WACCM r1i1p1
 IPSL-CM5A-MR r2i1p1 r3i1p1

We can use the sinfo() command to get an update on what
the returned ensmble looks like:

ens_joined.sinfo()
This ensemble contains:
 43 models
 153 realizations
 1 experiments
 1 variables
 153 associated files

After the joining we can now see that there is one file per realization.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

remap

To remap of all the sea ice concentration (sic) files in our directory to a common
one-degree by one-degree grid, simply do:

import cmipdata as cd

ens = cd.mkensemble('sic_OImon*')
ens = cd.remap(ens, remap='r360x180')

The string given to remap is any valid remapping option that can be given to cdo.
For example, you could give the name of a target grid file to remap to. The
remap() function also allows you to choose the remapping method,
but distance weighted remapping is used by default.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

Zonal mean

To create a zonal mean of all the sea ice concentration (sic) files, simply do:

import cmipdata as cd

ens = cd.mkensemble('sic_OImon*')
ens = cd.zonmean(ens,delete=False)

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

Time slice

Choose a common time slice out of all the CMIP5 sea ice concentration files in
our directory:

import cmipdata as cd
ens = cd.mkensemble('sic_OImon*')
ens = cd.time_slice(ens, start_date='1979-01-01', end_date='2013-12-31')

where start_date and end_date are given in YYYY-MM-DD format. This will
create a new set of files covering the chosen period, and by default will delete
the original input files (to prevent this specify delete=False). Any
realizations that do not contain the full requested date range will be dropped from
the ensemble (and deleted by default).

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cmipdata 0.6 documentation

 	Examples

Custom cdo command

You can apply any valid cdo command to the whole ensemble using the
my_operator() function. Chained cdo commands are allowed. In this
example we will carry out several chained operations. Our objective is to get a
time-anomalies of sea-ice for the period 1979 to 2013 relative to a base-period of
1991 to 2000. We also want the result to be zonally meaned, and remapped onto a
1-degree-latitude grid:

import cmipdata as cd

ens = cd.mkensemble('sic_OImon*')

my_cdo_str = 'cdo remapdis,r1x180 -zonmean -seldate,1979-01-01,2013-12-31' +
 '-sub {infile} -timmean -seldate,1991-01-01,2000-12-31 {infile}' +
 '{outfile}'

ens = cd.my_operator(ens, my_cdo_str, output_prefix='test_', delete=False)

The result is a set of files that begin with the prefix ``test_`, and an updated
ensemble.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	cmipdata 0.6 documentation

The cmipdata API

This section describes the cmipdata Application Programming Interface
(API). It contains a list of classes and functions, within the three core
cmipdata modules: classes, preprocessing_tools and
loading_tools. The little developed plotting_tools is also described.

classes

The classes module provides one classes and three functions.
The class: DataNode

The core functionality of cmipdata is to organize a large number of
model output files into a logical structure so that further processing
can be done. Data is organized into a tree-like structure using the class
DataNode as the nodes of a tree. The entire tree structure will be referred
to as an ensemble. At each level of the tree the level is specified by the
genre attribute.

Various methods exist to interact with the ensemble, and its
constituent elements.

The mkensemble() function is used to create Ensemble
objects, while match_ensembles() finds models common to two ensembles and
match_reliazations() matches realizations between two ensembles. Once
created, an ensemble can be used to harness the power of
the preprocessing_tools to apply systematic operations to all files.

	
class classes.DataNode(genre, name, parent=None, **kwargs)[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

Defines a cmipdata DataNode.

Attributes

	genre
	(string) The attribute of DataNode

	name
	(string) The name of the particular genre

	children
	(list) List of DataNodees of genre beneath the current DataNode

	parent
	(DataNode) for genre ‘ensemble’ the parent is None

	start_date
	(string) for genre ‘file’

	end_date
	(string) for genre ‘file’

	realm
	(string) for genre ‘variable’ contains the realm of the varaible

Methods

	
add(child)[source]

	Add DataNode to children

	Parameters:	child : DataNode

	
delete(child)[source]

	Delete DataNode from children

	Parameters:	child : DataNode

	
fulldetails()[source]

	prints information about the number of models,
experiments, variables and files ina DataNode tree.

	
fulldetails_tofile(fi)[source]

	prints information about the number of models,
experiments, variables and files ina DataNode tree.

	
getChild(input_name)[source]

	
	Returns DataNode given the name of the DataNode

	if it is in children

	Parameters:	input_name : string

	Returns:	DataNode : Returns None if the DataNode is not in children

	
getDictionary()[source]

	Returns a dictionary which
has the genres and their names for all the ancestors of
the DataNode

	
getNameWithoutDates()[source]

	Return string name with the dates removed if present

	Returns:	string

	
lister(genre, unique=True)[source]

	Returns a list of names of a particular genre

	Parameters:	genre : string

the genre of returned list

unique: boolean

if True removes duplicates from the list

Return

——

list of strings

	
mer()[source]

	
	Returns a generator containing lists of length 3

	
	with the DataNode genre:’realization’

	the DataNode genre:’experiment’
string model-experiment-realization

	Returns:	generator

	
objects(genre)[source]

	Returns a generator for a DataNode of a particular genre

	Parameters:	genre : string

the genre of returned generator

	
parentobject(genre)[source]

	Returns the parent DataNode of a particular genre

	Parameters:	genre : string

the genre of returned DataNode

	
sinfo(listOfGenres=['variable', 'model', 'experiment', 'realization', 'ncfile'])[source]

	Returns the number of models, experiments, realizations, variables and files
in the DataNode

	
squeeze()[source]

	Remove any empty elements from the ensemble

	
classes.match_models(ens1, ens2, delete=False)[source]

	Find common models between two ensembles.

	Parameters:	ens1 : cmipdata ensemble

ens2 : cmipdata ensemble

the two cmipdata ensembles to compare.

	Returns:	ens1 : cmipdata ensemble

ens2 : cmipdata ensemble

two ensembles with matching models.

	
classes.match_realizations(ens1, ens2, delete=False)[source]

	Find common realizations between two ensembles.

	Parameters:	ens1 : cmipdata ensemble

ens2 : cmipdata ensemble

the two cmipdata ensembles to compare.

	Returns:	ens1 : cmipdata ensemble

ens2 : cmipdata ensemble

two ensembles with matching realizations.

	
classes.mkensemble(filepattern, experiment='*', prefix='', kwargs='')[source]

	Creates and returns a cmipdata ensemble from a list of
filenames matching filepattern.

Optionally specifying prefix will remove prefix from each filename
before the parsing is done. This is useful, for example, to remove
pre-pended paths used in filepattern (see example 2).

Once the list of matching filenames is derived, the model, experiment,
realization, variable, start_date and end_date fields are extracted by
parsing the filnames against a specified file naming convention. By
default this is the CMIP5 convention, which is:

variable_realm_model_experiment_realization_startdate-enddate.nc

If the default CMIP5 naming convention is not used by your files,
an arbitary naming convention for the parsing may be specified by
the dicionary kwargs (see example 3).

	Parameters:	filepattern : string

A string that by default is matched against all files in the
current directory. But filepattern could include a full path
to reference files not in the current directory, and can also
include wildcards.

prefix : string

A pattern occuring in filepattern before the start of the official
filename, as defined by the file naming converntion. For instance,
a path preceeding the filename.

Examples

1. Create ensemble of all sea-level pressure files from the historical experiment in
the current directory:

ens = mkensemble('psl*historical*.nc')

2. Create ensemble of all sea-level pressure files from all experiments in a non-local
directory:

ens = mkensemble('/home/ncs/ra40/cmip5/sam/c5_slp/psl*'
 , prefix='/home/ncs/ra40/cmip5/sam/c5_slp/')

	Create ensemble defining a custom file naming convention:

kwargs = {'separator':'_', 'variable':0, 'realm':1, 'model':2, 'experiment':3,
 'realization':4, 'dates':5}

ens = mkensemble('psl*.nc', **kwargs)

preprocessing_tools

The preprocessing_tools module of cmipdata is a set of functions which use
os.system calls to Climate Data Operators (cdo) to systematically apply a
given processing on multiple NetCDF files, which are listed in cmipdata
ensemble objects.

	
preprocessing_tools.areaint(ensemble, delete=True, output_prefix='')[source]

	Calculate the area weighted integral for each file in ens.

The output files are prepended with ‘area-integral’. The original
the input files are removed if delete=True (default). An updated
ensemble object is also returned.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Compute the area integral for all files in ens:

ens = cd.areaint(ens)

	
preprocessing_tools.areamean(ensemble, delete=True, output_prefix='')[source]

	Calculate the area mean for each file in ens.

The output files are prepended with ‘area-mean’. The original
the input files are removed if delete=True (default). An updated
ensemble object is also returned.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Compute the area mean for all files in ens:

area_mean_ens = cd.areamean(ens)

	
preprocessing_tools.cat_exp_slices(ensemble, delete=True, output_prefix='')[source]

	Concatenate multiple time-slice files per experiment.

For all models in ens which divide their output into multiple files per
experiment (time-slices), cat_exp_slices concatenates the files into one
unified file, and deletes the individual slices, unless delete=False.
The input ensemble can contain multiple models, experiments, realizations
and variables, which cat_exp_slices will process independently. In other words,
files are joined per-model, per-experiment, per-realization, per-variable.
For example, if the ensemble contains two experiments for many models/realizations
for variable psl, two unified files will be produced per realization: one for the
historical and one for the rcp45 experiment. To join files
over experiments (e.g. to concatenate historical and rcp45) see cat_experiments.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the concatenation.

delete : boolean

If delete=True, delete the individual time-slice files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
concatenated files.

The concatenated files are written to present working directory.

See also

	cat_experiments

	Concatenate the files for two experiments.

Examples

For a simple ensemble comprized of only 1 model, 1 experiment and one realization.:

Look at the ensemble structure before the concatenation
ens.fulldetails()
HadCM3:
 historical
 r1i1p1
 ts
 ts_Amon_HadCM3_historical_r1i1p1_185912-188411.nc
 ts_Amon_HadCM3_historical_r1i1p1_188412-190911.nc
 ts_Amon_HadCM3_historical_r1i1p1_190912-193411.nc
 ts_Amon_HadCM3_historical_r1i1p1_193412-195911.nc
 ts_Amon_HadCM3_historical_r1i1p1_195912-198411.nc
 ts_Amon_HadCM3_historical_r1i1p1_198412-200512.nc

Do the concantenation
ens = cd.cat_exp_slices(ens)

Look at the ensemble structure after the concatenation
ens.fulldetails()
HadCM3:
 historical
 r1i1p1
 ts
 ts_Amon_HadCM3_historical_r1i1p1_185912-200512.nc

	
preprocessing_tools.cat_experiments(ensemble, variable_name, exp1_name, exp2_name, delete=True, output_prefix='')[source]

	Concatenate the files for two experiments.

Experiments exp1 and exp2 are concatenated into a single file for each
realization of each model listed in ens. For each realization, the concatenated file
for variable variable_name is written to the current working directory and the input files
are deleted by default, unless delete=False.

The concatenation occurs for each realization for which input files
exist for both exp1 and exp2. If no match is found for the realization
in exp1 (i.e. there is no corresponding realization in exp2), then the files
for both experiments are deleted from the path (unless delete=False) and
the realization is removed from ens. Similarly if exp2 is missing for a
given model, that model is deleted from ens.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the concatenation.

variable_name : str

The name of the variable to be concatenated.

exp1_name : str

The name of the first experiment to be concatenated (e.g. ‘historical’).

exp2_name : str

The name of the second experiment to be concatenated (e.g. ‘rcp45’).

delete : boolean

If delete=True, delete the individual time-slice files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
concatenated files.

The concatenated files are written to present working directory.

Examples

	Join the historical and rcp45 simulations for variable ts in ens:

ens = cd.cat_experiments(ens, 'ts', exp1_name='historical', exp2_name='rcp45')

	
preprocessing_tools.climatology(ensemble, delete=True, output_prefix='')[source]

	Compute the monthly climatology for each file in ens.

The climatology is calculated over the full file-length using
cdo ymonmean, and the output files are prepended with ‘climatology_‘.
The original the input files are removed if delete=True (default).
An updated ensemble object is also returned.

If you want to compute the climatology over a specific time slice, use time_slice
before compute the climatology.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the remapping.

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Compute the climatology:

climatology_ens = cd.climatology(ens)

	
preprocessing_tools.del_ens_files(ensem)[source]

	delete from disk all files listed in ensemble ens

	
preprocessing_tools.ens_stats(ens, variable_name, output_prefix='')[source]

	Compute the ensemble mean and standard deviation.

The ensemble mean and standard deviation is computed over all models-realizations
and experiments for variable variable_name in ens, such that each model has a weight
of one. An output file is written containing the ensemble mean and another file is
written with the standard deviation, containing the names ‘_ENS-MEAN_‘ and ‘_ENS-STD_‘
in the place of the model-name. If the ensemble contains multiple experiments, files
are written for each experiment.

The ensemble in ens must be homogenous. That is to say all files must be on the same
grid and span the same time-frame, within each experiment (see remap, and time_slice for more).
Additionally, variable_name should have only one filename per realization and experiment. That
is, join_exp_slice should have been applied.

The calculation is done by, first computing the mean over all realizations for each model;
then for the ensemble, calculating the mean over all models.
The standard deviation is calculated across models using the realization mean for each model.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the concatenation.

variable_name : str

The name of the variable to be concatenated.

	Returns:	A tuple of lists containing the names of the mean and standard deviation files created

The ENS-MEAN and ENS-STD files are written to present working directory.

Examples

	Compute the statistics for the ts variable:

>>cd.ens_stats(ens, 'ts')

experiment_list = ens.lister(‘experiment’)
for exname in experiment_list:

files_to_mean = []
for model in ens.objects(‘model’):

experiment = model.getChild(exname)
if experiment != None:

modfilesall = []
for realization in experiment.children:

realization
modfilesall.append(realization.getChild(variable_name).children)

	
preprocessing_tools.my_operator(ensemble, my_cdo_str='', output_prefix='processed_', delete=False)[source]

	Apply a customized cdo operation to all files in ens.

For each file in ens the command in my_cdo_str is applied and an output
file appended by ‘output_prefix’ is created.

Optionally delete the original input files if delete=True.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

my_cdo_str : str

The (chain) of cdo commands to apply. Defined variables which can
be used in my_cdo_str are: model, experiment, realization, variable,
infile, outfile

output_prefix : str

The string to prepend to the processed filenames.

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Do an annual mean:

my_cdo_str = 'cdo -yearmean {infile} {outfile}'
my_ens = cd.my_operator(ens, my_cdo_str, output_prefix='annual_')

	Do a date selection and time mean:

my_cdo_str = 'cdo sub {infile} -timmean -seldate,1991-01-01,2000-12-31 {infile} {outfile}'
my_ens = cd.my_operator(ens, my_cdo_str, output_prefix='test_')

	
preprocessing_tools.remap(ensemble, remap='r360x180', method='remapdis', delete=True, output_prefix='')[source]

	Remap files to a specified resolution.

For each file in ens, remap to resolution remap=’r_nlon_x_nlat_‘, where _nlon_,
nlat are the number of lat-lon points to use. Removal of the original input
files occurs if delete=True (default). An updated ensemble object is also returned.

By default the distance weighted remapping is used, but any valid cdo
remapping method can be used by specifying the option argument ‘method’,
e.g. method=’remapdis’.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the remapping.

remap : str

The resolution to remap to, e.g. for a 1-degree grid remap=’r360x180’

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

	
preprocessing_tools.time_anomaly(ensemble, start_date, end_date, delete=False, output_prefix='')[source]

	Compute the anomaly relative the period between start_date and end_date,
for each file in ens.

The resulting output is written to file with the prefix ‘anomaly_‘, and the
original input files are deleted if delete=True.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

start_date : str

Start date for the base period with format: YYYY-MM-DD

end_date : str

End date for the base period with format: YYYY-MM-DD

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Compute the anomaly relative to the base period 1980 to 2010:

ens = cd.time_anomaly(ens, start_date='1980-01-01', end_date='2010-12-31')

	
preprocessing_tools.time_slice(ensemble, start_date, end_date, delete=True, output_prefix='')[source]

	Limit the data to the period between start_date and end_date,
for each file in ens.

The resulting output is written to file, named with with the correct
date range, and the original input files are deleted if delete=True.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

start_date : str

Start date for the output file with format: YYYY-MM-DD

end_date : str

End date for the output file with format: YYYY-MM-DD

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Select data between 1 January 1980 and 31 December 2013:

ens = cd.time_slice(ens, start_date='1979-01-01', end_date='2013-12-31')

	
preprocessing_tools.trends(ensemble, start_date, end_date, delete=False)[source]

	Compute linear trends over the period between start_date and end_date,
for each file in ens.

The resulting output is written to file, named with with the correct
date range, and the original input files are deleted if delete=True.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

start_date : str

Start date for the output file with format: YYYY-MM-DD

end_date : str

End date for the output file with format: YYYY-MM-DD

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory,

and begin with “slope_” and “intercept_”.

Examples

	Select data between 1 January 1980 and 31 December 2013:

ens = cd.trends(ens, start_date='1979-01-01', end_date='2013-12-31')

	
preprocessing_tools.zonmean(ensemble, delete=True, output_prefix='')[source]

	Calculate the zonal mean for each file in ens.

The output files are prepended with ‘zonal-mean’. The original
the input files are removed if delete=True (default). An updated
ensemble object is also returned.

	Parameters:	ens : cmipdata Ensemble

The ensemble on which to do the processing.

delete : boolean

If delete=True, delete the original input files.

	Returns:	ens : cmipdata Ensemble

An updated ensemble object, containing the names of the newly
processed files.

The processed files are also written to present working directory.

Examples

	Compute the zonal mean for all files in ens:

zonal_mean_ens = cd.zonmean(ens)

loading_tools

The loading_tools module of cmipdata is a set of functions which use
the cdo python bindings and NetCDF4 to load data from input NetCDF
files listed in a cmipdata ensemble object into python numpy arrays.
Some processing can optionally be done during the loading, specifically
remapping, time-slicing, time-averaging and zonal-averaging.

	
loading_tools.get_dimensions(ifile, varname, toDatetime=False)[source]

	Returns the dimensions of variable varname in file ifile as a dictionary.
If one of the dimensions begins with lat (Lat, Latitude and Latitudes), it
will be returned with a key of lat, and similarly for lon. If toDatetime=True,
the time dimension is converted to a datetime.

	
loading_tools.get_models(files)[source]

	

	
loading_tools.get_realizations(files)[source]

	

	
loading_tools.loadfiles(ens, varname, toDatetime=False, **kwargs)[source]

	Load a variable “varname” from all files in ens, and load it into a matrix
where the zeroth dimensions represents an input file and dimensions 1 to n are
the dimensions of the input variable. Variable “varname” must have the same shape
in all ifiles. Keyword argument toDatetime (defaults to False) will be passed as
a keyword argument to get_dimensions(). Optionally specify any kwargs valid for loadvar.

Requires netCDF4, cdo bindings and numpy

	Returns:	dictionary with keys data and dimensions

data maps to a numpy array containing the data
dimensions has keys; models, realizations,

and possibly lat, lon, and time

	
loading_tools.loadvar(ifile, varname, cdostr=None, **kwargs)[source]

	Load variables from a NetCDF file with optional pre-processing.

Load a CMIP5 netcdf variable “varname” from “ifile” and an optional
cdo string for preprocessing the data from the netCDF files.
Requires netCDF4, CDO and CDO python bindings.
Returns a masked array, var.

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	cmipdata 0.6 documentation

 Python Module Index

 c |
 l |
 p

 			

 		
 c	

 	
 	
 classes	

 			

 		
 l	

 	
 	
 loading_tools	

 			

 		
 p	

 	
 	
 preprocessing_tools	

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	cmipdata 0.6 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | Z

A

 	

 	add() (classes.DataNode method)

 	areaint() (in module preprocessing_tools)

 	

 	areamean() (in module preprocessing_tools)

C

 	

 	cat_exp_slices() (in module preprocessing_tools)

 	cat_experiments() (in module preprocessing_tools)

 	

 	classes (module)

 	climatology() (in module preprocessing_tools)

D

 	

 	DataNode (class in classes)

 	del_ens_files() (in module preprocessing_tools)

 	

 	delete() (classes.DataNode method)

E

 	

 	ens_stats() (in module preprocessing_tools)

F

 	

 	fulldetails() (classes.DataNode method)

 	

 	fulldetails_tofile() (classes.DataNode method)

G

 	

 	get_dimensions() (in module loading_tools)

 	get_models() (in module loading_tools)

 	get_realizations() (in module loading_tools)

 	

 	getChild() (classes.DataNode method)

 	getDictionary() (classes.DataNode method)

 	getNameWithoutDates() (classes.DataNode method)

L

 	

 	lister() (classes.DataNode method)

 	loadfiles() (in module loading_tools)

 	

 	loading_tools (module)

 	loadvar() (in module loading_tools)

M

 	

 	match_models() (in module classes)

 	match_realizations() (in module classes)

 	mer() (classes.DataNode method)

 	

 	mkensemble() (in module classes)

 	my_operator() (in module preprocessing_tools)

O

 	

 	objects() (classes.DataNode method)

P

 	

 	parentobject() (classes.DataNode method)

 	

 	preprocessing_tools (module)

R

 	

 	remap() (in module preprocessing_tools)

S

 	

 	sinfo() (classes.DataNode method)

 	

 	squeeze() (classes.DataNode method)

T

 	

 	time_anomaly() (in module preprocessing_tools)

 	time_slice() (in module preprocessing_tools)

 	

 	trends() (in module preprocessing_tools)

Z

 	

 	zonmean() (in module preprocessing_tools)

 Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

 _modules/loading_tools.html

 Navigation

 		
 index

 		
 modules |

 		cmipdata 0.6 documentation »

 		Module code »

 Source code for loading_tools

"""loading_tools
======================

The loading_tools module of cmipdata is a set of functions which use
the cdo python bindings and NetCDF4 to load data from input NetCDF
files listed in a cmipdata ensemble object into python numpy arrays.
Some processing can optionally be done during the loading, specifically
remapping, time-slicing, time-averaging and zonal-averaging.

.. moduleauthor:: Neil Swart <neil.swart@ec.gc.ca>
"""
import cdo as cdo
cdo = cdo.Cdo() # recommended import
import os
import numpy as np
from netCDF4 import Dataset, num2date, date2num
import datetime

clean out tmp to make space for CDO processing.
os.system('rm -rf /tmp/cdo*')

[docs]def loadvar(ifile, varname, cdostr=None, **kwargs):
 """
 Load variables from a NetCDF file with optional pre-processing.

 Load a CMIP5 netcdf variable "varname" from "ifile" and an optional
 cdo string for preprocessing the data from the netCDF files.
 Requires netCDF4, CDO and CDO python bindings.
 Returns a masked array, var.
 """
 # Open the variable using NetCDF4 to get scale and offset attributes.
 nc = Dataset(ifile, 'r')
 ncvar = nc.variables[varname]

 # apply cdo string if it exists
 if(cdostr):
 opslist = cdostr.split()
 base_op = opslist[0].replace('-', '')
 if len(opslist) > 1:
 ops_str = ' '.join(opslist[1::]) + ' ' + ifile
 var = getattr(cdo, base_op)(input=ops_str, returnMaArray=varname)
 else:
 var = getattr(cdo, base_op)(input=ifile, returnMaArray=varname)

 else:
 var = cdo.readMaArray(ifile, varname=varname)

 # Apply any scaling and offsetting needed:
 try:
 var_offset = ncvar.add_offset
 except:
 var_offset = 0
 try:
 var_scale = ncvar.scale_factor
 except:
 var_scale = 1

 # var = var*var_scale + var_offset
 # return var
 return np.squeeze(var)

def _create_tempfile(ens, varname, ifileone, cdostr=None, **kwargs):
 """
 _create_tempfile is called when modifications are made to the ensemeble without
 creating new files. Creates a temporary file that can be used to determine dimensions of
 the modified data.
 """
 if(cdostr):
 opslist = cdostr.split()
 op = opslist[0].replace('-', '')
 cdo_str = 'cdo ' + op + ' ' + ifileone + ' temporary_0.nc'
 ex = os.system(cdo_str)
 if len(opslist) > 1:
 for i in range(1, len(opslist)):
 op = opslist[i].replace('-', '')
 cdo_str = 'cdo ' + op + ' ' + 'temporary_' + str(i-1) + '.nc' + ' temporary_' + str(i) + '.nc'
 ex = os.system(cdo_str)
 os.remove('temporary_' + str(i-1) + '.nc')
 if i == len(opslist)-1:
 os.rename('temporary_' + str(len(opslist)-1) + '.nc', 'temp123.nc')
 else:
 os.rename('temporary_0.nc', 'temp123.nc')

[docs]def loadfiles(ens, varname, toDatetime=False, **kwargs):
 """
 Load a variable "varname" from all files in ens, and load it into a matrix
 where the zeroth dimensions represents an input file and dimensions 1 to n are
 the dimensions of the input variable. Variable "varname" must have the same shape
 in all ifiles. Keyword argument toDatetime (defaults to False) will be passed as
 a keyword argument to get_dimensions(). Optionally specify any kwargs valid for loadvar.

 Requires netCDF4, cdo bindings and numpy

 Returns

 dictionary with keys data and dimensions
 data maps to a numpy array containing the data
 dimensions has keys; models, realizations,
 and possibly lat, lon, and time

 """
 # Get all input files from the ensemble
 files = ens.objects('ncfile')
 ifiles = []
 for f in files:
 ifiles.append(f.name)

 # if a cdostr is being applied,
 # create a temporaryfile to determine the dimensions of the data
 if 'cdostr' in kwargs:
 _create_tempfile(ens, varname, ifiles[0], **kwargs)
 dimensions = get_dimensions('temp123.nc', varname, toDatetime=toDatetime)
 os.remove('temp123.nc')
 else:
 dimensions = get_dimensions(ifiles[0], varname, toDatetime=toDatetime)

 vst = loadvar(ifiles[0], varname, **kwargs)
 varmat = np.ones((len(ifiles),) + vst.shape) * 999e99

 for i, ifile in enumerate(ifiles):
 varmat[i, :] = loadvar(ifile, varname, **kwargs)

 varmat = np.ma.masked_equal(varmat, 999e99)

 models = get_models(files)
 realizations = get_realizations(files)
 dimensions['models'] = models
 dimensions['realizations'] = realizations
 return {"data": varmat,
 "dimensions": dimensions,
 }

[docs]def get_models(files):
 models = []
 for f in files:
 models.append(f.parentobject('model').name)
 return models

[docs]def get_realizations(files):
 realizations = []
 for f in files:
 realizations.append(f.parentobject('realization').name)
 return realizations

[docs]def get_dimensions(ifile, varname, toDatetime=False):
 """Returns the dimensions of variable varname in file ifile as a dictionary.
 If one of the dimensions begins with lat (Lat, Latitude and Latitudes), it
 will be returned with a key of lat, and similarly for lon. If toDatetime=True,
 the time dimension is converted to a datetime.
 """

 # Open the variable using NetCDF4
 nc = Dataset(ifile, 'r')
 ncvar = nc.variables[varname]

 dimensions = {}
 for dimension in ncvar.dimensions:
 if dimension.lower().startswith('lat'):
 dimensions['lat'] = nc.variables[dimension][:]
 elif dimension.lower().startswith('lon'):
 dimensions['lon'] = nc.variables[dimension][:]
 elif dimension.lower().startswith('time'):
 if toDatetime is True:
 # Following Phil Austin's slice_nc
 nc_time = nc.variables[dimension]
 try:
 cal = nc_time.calendar
 except:
 cal = 'standard'
 dimensions['time'] = num2date(nc_time[:], nc_time.units, cal)
 dimensions['time'] = [datetime.datetime(
 *item.timetuple()[:6]) for item in dimensions['time']]
 dimensions['time'] = np.array(dimensions['time'])
 else:
 dimensions['time'] = nc.variables[dimension][:]
 else:
 dimensions[dimension] = nc.variables[dimension][:]
 return dimensions

if __name__ == "__main__":
 pass

 © Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		cmipdata 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		cmipdata 0.6 documentation »

 All modules for which code is available

		classes

		loading_tools

		preprocessing_tools

 © Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

_modules/preprocessing_tools.html

 Navigation

 		
 index

 		
 modules |

 		cmipdata 0.6 documentation »

 		Module code »

 Source code for preprocessing_tools

"""preprocessing_tools
======================
 The preprocessing_tools module of cmipdata is a set of functions which use
 os.system calls to Climate Data Operators (cdo) to systematically apply a
 given processing on multiple NetCDF files, which are listed in cmipdata
 ensemble objects.

 .. moduleauthor:: Neil Swart <neil.swart@ec.gc.ca>
"""
import os
import glob
import classes as dc
import copy
import itertools

===
The next three operators work on multiple files across the ensemble,
and cannot be chained together.
===

[docs]def cat_exp_slices(ensemble, delete=True, output_prefix=''):
 """
 Concatenate multiple time-slice files per experiment.

 For all models in ens which divide their output into multiple files per
 experiment (time-slices), cat_exp_slices concatenates the files into one
 unified file, and deletes the individual slices, unless delete=False.
 The input ensemble can contain multiple models, experiments, realizations
 and variables, which cat_exp_slices will process independently. In other words,
 files are joined per-model, per-experiment, per-realization, per-variable.
 For example, if the ensemble contains two experiments for many models/realizations
 for variable psl, two unified files will be produced per realization: one for the
 historical and one for the rcp45 experiment. To join files
 over experiments (e.g. to concatenate historical and rcp45) see cat_experiments.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the concatenation.
 delete : boolean
 If delete=True, delete the individual time-slice files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 concatenated files.

 The concatenated files are written to present working directory.

 See also

 cat_experiments : Concatenate the files for two experiments.

 Examples

 For a simple ensemble comprized of only 1 model, 1 experiment and one realization.::

 # Look at the ensemble structure before the concatenation
 ens.fulldetails()
 HadCM3:
 historical
 r1i1p1
 ts
 ts_Amon_HadCM3_historical_r1i1p1_185912-188411.nc
 ts_Amon_HadCM3_historical_r1i1p1_188412-190911.nc
 ts_Amon_HadCM3_historical_r1i1p1_190912-193411.nc
 ts_Amon_HadCM3_historical_r1i1p1_193412-195911.nc
 ts_Amon_HadCM3_historical_r1i1p1_195912-198411.nc
 ts_Amon_HadCM3_historical_r1i1p1_198412-200512.nc

 # Do the concantenation
 ens = cd.cat_exp_slices(ens)

 # Look at the ensemble structure after the concatenation
 ens.fulldetails()
 HadCM3:
 historical
 r1i1p1
 ts
 ts_Amon_HadCM3_historical_r1i1p1_185912-200512.nc

 """
 ens = copy.deepcopy(ensemble)

 # Set the env variable to skip repeated times
 os.environ["SKIP_SAME_TIME"] = "1"

 # Loop over all variables
 for var in ens.objects('variable'):
 files = var.children
 modfiles = [f.name for f in files]
 startdates = [f.start_date for f in files]
 enddates = [f.end_date for f in files]
 # check if there are multiple files
 if len(modfiles) > 1:
 print 'joining files'
 infiles = ' '.join(modfiles)
 outfile = (output_prefix +
 os.path.split(files[0].getNameWithoutDates())[1] + '_' +
 str(min(startdates)) + '-' +
 str(max(enddates)) + '.nc')
 if not os.path.isfile(outfile):
 # join the files
 catstring = 'cdo mergetime ' + infiles + ' ' + outfile
 os.system(catstring)
 else:
 print outfile + ' already exists.'
 f = dc.DataNode('ncfile', outfile, parent=var, start_date=min(startdates), end_date=max(enddates))
 var.children = [f]

 # delete the old files
 if delete is True:
 for cfile in modfiles:
 delstr = 'rm ' + cfile
 os.system(delstr)
 ens.squeeze()
 return ens

[docs]def cat_experiments(ensemble, variable_name, exp1_name, exp2_name, delete=True, output_prefix=''):
 """Concatenate the files for two experiments.

 Experiments exp1 and exp2 are concatenated into a single file for each
 realization of each model listed in ens. For each realization, the concatenated file
 for variable variable_name is written to the current working directory and the input files
 are deleted by default, unless delete=False.

 The concatenation occurs for each realization for which input files
 exist for both exp1 and exp2. If no match is found for the realization
 in exp1 (i.e. there is no corresponding realization in exp2), then the files
 for both experiments are deleted from the path (unless delete=False) and
 the realization is removed from ens. Similarly if exp2 is missing for a
 given model, that model is deleted from ens.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the concatenation.

 variable_name : str
 The name of the variable to be concatenated.

 exp1_name : str
 The name of the first experiment to be concatenated (e.g. 'historical').

 exp2_name : str
 The name of the second experiment to be concatenated (e.g. 'rcp45').

 delete : boolean
 If delete=True, delete the individual time-slice files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 concatenated files.

 The concatenated files are written to present working directory.

 Examples

 1. Join the historical and rcp45 simulations for variable ts in ens::

 ens = cd.cat_experiments(ens, 'ts', exp1_name='historical', exp2_name='rcp45')

 """
 ens = copy.deepcopy(ensemble)

 # Set the env variable to skip repeated times
 os.environ["SKIP_SAME_TIME"] = "1"

 # Create a copy of ens to use later for deleting input files if delete=True
 del_ens = copy.deepcopy(ens)

 # a list of models to remove from ens, if one experiment is missing
 # completely from the model
 models_to_delete = {}
 # a list of realizations to remove from ens, if the realization is missing
 # from one experiment
 realizations_to_delete = {}

 # Loop over all models
 for model in ens.children:
 e1 = model.getChild(exp1_name)
 e2 = model.getChild(exp2_name)

 for e in model.children:
 if e is not e1 and e is not e2:
 model.delete(e)

 # if the model is missing one experiment, remove that model from ens.
 if (e1 is not None) and (e2 is not None):
 # Get a list of realizations names in the two experiments.
 e1_r_names = [r.name for r in e1.children]
 e2_r_names = [r.name for r in e2.children]

 # Find matching realizations btwn the two experiments.
 realization_matches = set(e1_r_names).intersection(e2_r_names)
 realization_misses = set(e1_r_names).difference(e2_r_names)

 # add non-matching realizations to the realizations_deleted dict
 # for printing later
 if realization_misses:
 realizations_to_delete[model.name] = realization_misses

 # Delete non-matching realizations from ens, and do the join for
 # matching ones.
 for realization_name in realization_matches:
 # Get the realizations
 e1r = e1.getChild(realization_name)
 e2r = e2.getChild(realization_name)

 # Get the variable objects from the two experiments
 e1v = e1r.getChild(variable_name)
 e2v = e2r.getChild(variable_name)

 # join the two experiments original filenames with a whitespace
 filenames = []
 for f in e1v.children:
 filenames.append(f.name)
 for f in e2v.children:
 filenames.append(f.name)
 infiles = ' '.join(filenames)

 startdates = []
 enddates = []
 for f in e1v.children:
 startdates.append(f.start_date)
 enddates.append(f.end_date)
 for f in e2v.children:
 startdates.append(f.start_date)
 enddates.append(f.end_date)
 out_startdate = min(startdates)
 out_enddate = max(enddates)
 # construct the output filename
 outfile = (output_prefix +
 e1v.name + '_' + e1v.realm + '_' + model.name + '_' +
 e1.name + '-' + e2.name + '_' +
 e1r.name + '_' +
 out_startdate + '-' +
 out_enddate + '.nc')

 # do the concatenation using CDO
 print "\n join " + model.name + '_' + e1r.name + ' ' + e1.name + ' to ' + e2.name
 catstring = ('cdo mergetime ' + infiles + ' ' + outfile)

 os.system(catstring)

 # Add a new joined experiment to ens,
 # with a newly minted realization, variable + filenames.
 e = dc.DataNode('experiment', e1.name + '-' + e2.name, parent=model)
 model.add(e)

 r = dc.DataNode('realization', e1r.name, parent=e)
 e.add(r)

 v = dc.DataNode('variable', e1v.name, parent=r)
 r.add(v)
 f = dc.DataNode('ncfile', outfile, parent=v,
 start_date=out_startdate,
 end_date=out_enddate)
 v.add(f)

 # delete e1 and e2, which have been replaced with joined_e
 model.delete(e1)
 model.delete(e2)

 elif e1 is None and e2 is None:
 pass
 elif e2 is None:
 models_to_delete[model.name] = e1.name
 elif e1 is None:
 models_to_delete[model.name] = e2.name

 # If delete=True, delete the original files for variable_name,
 # leaving only the newly joined ones behind.
 if delete is True:
 for f in del_ens.objects('ncfile'):
 delstr = 'rm ' + f.name
 os.system(delstr)

 # Remove models with missing experiments from ens, and then return ens
 print ' \n\n Models deleted from ensemble (missing one experiment completely): \n'
 print '\t Model \t Experiment \n'

 for model_name, missing_experiment in models_to_delete.iteritems():
 ens.delete(ens.getChild(model_name))
 print '\t %s \t %s' % (model_name, missing_experiment)

 print ' \n\n Realizations deleted (missing from one experiment): \n'
 print '\t Model \t Realizations \n'
 for key, value in realizations_to_delete.iteritems():
 print '\t %s \t %s' % (key, ' '.join(value))

 ens.squeeze()
 return ens

[docs]def ens_stats(ens, variable_name, output_prefix=''):
 """ Compute the ensemble mean and standard deviation.

 The ensemble mean and standard deviation is computed over all models-realizations
 and experiments for variable variable_name in ens, such that each model has a weight
 of one. An output file is written containing the ensemble mean and another file is
 written with the standard deviation, containing the names '_ENS-MEAN_' and '_ENS-STD_'
 in the place of the model-name. If the ensemble contains multiple experiments, files
 are written for each experiment.

 The ensemble in ens must be homogenous. That is to say all files must be on the same
 grid and span the same time-frame, within each experiment (see remap, and time_slice for more).
 Additionally, variable_name should have only one filename per realization and experiment. That
 is, join_exp_slice should have been applied.

 The calculation is done by, first computing the mean over all realizations for each model;
 then for the ensemble, calculating the mean over all models.
 The standard deviation is calculated across models using the realization mean for each model.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the concatenation.

 variable_name : str
 The name of the variable to be concatenated.

 Returns

 A tuple of lists containing the names of the mean and standard deviation files created
 The ENS-MEAN and ENS-STD files are written to present working directory.

 Examples

 1. Compute the statistics for the ts variable::

 >>cd.ens_stats(ens, 'ts')

 experiment_list = ens.lister('experiment')
 for exname in experiment_list:
 files_to_mean = []
 for model in ens.objects('model'):
 experiment = model.getChild(exname)
 if experiment != None:
 modfilesall = []
 for realization in experiment.children:
 realization
 modfilesall.append(realization.getChild(variable_name).children)
 """
 meanfiles = []
 stdevfiles = []
 experiments = {}
 for f in ens.objects('ncfile'):
 table = f.getDictionary()
 if table['variable'] == variable_name:
 if table['experiment'] in experiments:
 experiments[table['experiment']].append([f, table['model']])
 else:
 experiments[table['experiment']] = [[f, table['model']]]
 # multiple output files for multiple experiments
 for experimentname in experiments:
 files_to_mean = []
 models = {}
 for fm in experiments[experimentname]:
 if fm[1] in models:
 models[fm[1]].append(fm[0])
 else:
 models[fm[1]] = [fm[0]]
 for model in models:
 files = models[model]

 fnames = []
 for f in files:
 fnames.append(f.name)

 inputfiles = ''
 for f in fnames:
 inputfiles = inputfiles + ' ' + f
 outfile = output_prefix + os.path.split(fnames[0])[1].replace(files[0].parent.parent.name, 'R-MEAN')
 cdostr = 'cdo ensmean ' + inputfiles + ' ' + outfile

 if os.path.isfile(outfile):
 files_to_mean.append(outfile)
 else:
 os.system(cdostr)
 files_to_mean.append(outfile)

 in_files = ' '.join(files_to_mean)
 print files_to_mean[0]
 print experiments[experimentname][0][1]
 outfilename = os.path.split(files_to_mean[0])[1].replace(experiments[experimentname][0][1] + '_', "")
 print outfilename
 out_file = output_prefix + 'ENS-MEAN_' + outfilename

 cdo_str = 'cdo ensmean ' + in_files + ' ' + out_file
 os.system(cdo_str)
 meanfiles.append(out_file)

 # Now do the standard deviation
 out_file = output_prefix + 'ENS-STD_' + outfilename.replace('R-MEAN', 'STD')

 cdo_str = 'cdo ensstd ' + in_files + ' ' + out_file
 os.system(cdo_str)
 stdevfiles.append(out_file)

 for fname in files_to_mean:
 os.system('rm ' + fname)
 return meanfiles, stdevfiles

===
The operators below this point work on a file-by-file basis and can be chained together
(in principle, not implemented). Practically my_operator can be used to chain operations.
===

[docs]def areaint(ensemble, delete=True, output_prefix=''):
 """
 Calculate the area weighted integral for each file in ens.

 The output files are prepended with 'area-integral'. The original
 the input files are removed if delete=True (default). An updated
 ensemble object is also returned.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 Examples

 1. Compute the area integral for all files in ens::

 ens = cd.areaint(ens)

 """
 ens = copy.deepcopy(ensemble)

 # loop over all files
 for f in ens.objects('ncfile'):
 outfile = output_prefix + 'area-integral_' + os.path.split(f.name)[1]

 cdostr = 'cdo fldsum -mul ' + f.name + ' -gridarea ' + f.name + ' ' + outfile
 os.system(cdostr)

 # delete old files
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 var = f.parent
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)
 var.delete(f)

 return ens

[docs]def areamean(ensemble, delete=True, output_prefix=''):
 """
 Calculate the area mean for each file in ens.

 The output files are prepended with 'area-mean'. The original
 the input files are removed if delete=True (default). An updated
 ensemble object is also returned.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 Examples

 1. Compute the area mean for all files in ens::

 area_mean_ens = cd.areamean(ens)

 """
 ens = copy.deepcopy(ensemble)

 # loop over all files
 for f in ens.objects('ncfile'):
 outfile = output_prefix + 'area-mean_' + os.path.split(f.name)[1]

 cdostr = 'cdo fldmean ' + f.name + ' ' + outfile
 os.system(cdostr)

 # delete old files
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 var = f.parent
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)
 var.delete(f)

 return ens

[docs]def zonmean(ensemble, delete=True, output_prefix=''):
 """
 Calculate the zonal mean for each file in ens.

 The output files are prepended with 'zonal-mean'. The original
 the input files are removed if delete=True (default). An updated
 ensemble object is also returned.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 Examples

 1. Compute the zonal mean for all files in ens::

 zonal_mean_ens = cd.zonmean(ens)

 """
 ens = copy.deepcopy(ensemble)

 # loop over all files
 for f in ens.objects('ncfile'):
 outfile = output_prefix + 'zonal-mean_' + os.path.split(f.name)[1]

 cdostr = 'cdo zonmean ' + f.name + ' ' + outfile
 ex = os.system(cdostr)

 var = f.parent

 # if zonalmean is not succesful, delete the new file
 if ex != 0:
 try:
 print 'deleting ' + outfile
 os.system('rm -f ' + outfile)
 except:
 pass
 else:
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)

 var.delete(f)

 # delete the old files
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 return ens

[docs]def climatology(ensemble, delete=True, output_prefix=''):
 """
 Compute the monthly climatology for each file in ens.

 The climatology is calculated over the full file-length using
 cdo ymonmean, and the output files are prepended with 'climatology_'.
 The original the input files are removed if delete=True (default).
 An updated ensemble object is also returned.

 If you want to compute the climatology over a specific time slice, use time_slice
 before compute the climatology.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the remapping.

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 Examples

 1. Compute the climatology::

 climatology_ens = cd.climatology(ens)

 """
 ens = copy.deepcopy(ensemble)

 # loop over all the files
 for f in ens.objects('ncfile'):
 outfile = output_prefix + 'climatology_' + os.path.split(f.name)[1]
 var = f.parent
 cdostr = 'cdo ymonmean -selvar,' + var.name + ' ' + f.name + ' ' + outfile
 os.system(cdostr)

 # delete the old file
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)
 var.delete(f)

 return ens

[docs]def remap(ensemble, remap='r360x180', method='remapdis', delete=True, output_prefix=''):
 """
 Remap files to a specified resolution.

 For each file in ens, remap to resolution remap='r_nlon_x_nlat_', where _nlon_,
 nlat are the number of lat-lon points to use. Removal of the original input
 files occurs if delete=True (default). An updated ensemble object is also returned.

 By default the distance weighted remapping is used, but any valid cdo
 remapping method can be used by specifying the option argument 'method',
 e.g. method='remapdis'.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the remapping.

 remap : str
 The resolution to remap to, e.g. for a 1-degree grid remap='r360x180'

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 EXAMPLE:

 1. remap files to a one-degree grid::

 ens = cd.remap(ens, remap='r1x180')

 """

 ens = copy.deepcopy(ensemble)

 # loop over all files
 for f in ens.objects('ncfile'):
 outfile = output_prefix + 'remap_' + os.path.split(f.name)[1]
 var = f.parent
 cdostr = ('cdo ' + method + ',' + remap + ' -selvar,' +
 var.name + ' ' + f.name + ' ' + outfile)
 ex = os.system(cdostr)

 # if remapping is not successful delete the new file
 if ex != 0:
 try:
 print 'deleting ' + outfile
 os.system('rm -f ' + outfile)
 except:
 pass
 else:
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)

 var.delete(f)

 # delete the old file
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 return ens

[docs]def time_slice(ensemble, start_date, end_date, delete=True, output_prefix=''):
 """
 Limit the data to the period between start_date and end_date,
 for each file in ens.

 The resulting output is written to file, named with with the correct
 date range, and the original input files are deleted if delete=True.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 start_date : str
 Start date for the output file with format: YYYY-MM-DD
 end_date : str
 End date for the output file with format: YYYY-MM-DD

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 EXAMPLES

 1. Select data between 1 January 1980 and 31 December 2013::

 ens = cd.time_slice(ens, start_date='1979-01-01', end_date='2013-12-31')

 """
 ens = copy.deepcopy(ensemble)
 date_range = start_date + ',' + end_date

 # convert dates to CMIP YYYYMM format
 start_yyyymm = start_date.replace('-', '')[0:6]
 end_yyyymm = end_date.replace('-', '')[0:6]

 for f in ens.objects('ncfile'):
 print f.name
 # don't proceed if the file already has the correct start date
 if f.start_date != start_yyyymm or f.start_date != end_yyyymm:
 var = f.parent
 # check that the new date range is within the old date range
 if f.start_date <= start_yyyymm and f.end_date >= end_yyyymm:
 outfile = output_prefix + os.path.split(f.getNameWithoutDates())[1] + '_' + start_yyyymm + '-' + end_yyyymm + '.nc'
 print 'time limiting...'

 cdostr = ('cdo -L seldate,' + date_range + ' -selvar,' +
 var.name + ' ' + f.name + ' ' + outfile)
 ex = os.system(cdostr)

 # if the time silcing is unsuccesful, remove the new file
 if ex != 0:
 try:
 print 'deleting ' + outfile
 os.system('rm -f ' + outfile)
 except:
 pass
 else:
 ncfile = dc.DataNode('ncfile', outfile, parent=var,
 start_date=start_yyyymm, end_date=end_yyyymm)
 var.add(ncfile)

 else:
 print "%s %s is not in the date-range" % (var.parent.parent.parent.name, var.parent.name)

 var.delete(f)

 # delete the old file
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)
 ens.squeeze()
 return ens

[docs]def time_anomaly(ensemble, start_date, end_date, delete=False, output_prefix=''):
 """
 Compute the anomaly relative the period between start_date and end_date,
 for each file in ens.

 The resulting output is written to file with the prefix 'anomaly_', and the
 original input files are deleted if delete=True.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 start_date : str
 Start date for the base period with format: YYYY-MM-DD
 end_date : str
 End date for the base period with format: YYYY-MM-DD

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 EXAMPLES

 1. Compute the anomaly relative to the base period 1980 to 2010::

 ens = cd.time_anomaly(ens, start_date='1980-01-01', end_date='2010-12-31')

 """
 ens = copy.deepcopy(ensemble)
 date_range = start_date + ',' + end_date

 # convert dates to CMIP YYYYMM format
 start_yyyymm = start_date.replace('-', '')[0:6]
 end_yyyymm = end_date.replace('-', '')[0:6]
 # loop over all files
 for f in ens.objects('ncfile'):
 var = f.parent
 # check the date range is within the file date range
 if f.start_date <= start_yyyymm and f.end_date >= start_yyyymm:
 var = f.parent
 outfile = output_prefix + 'anomaly_' + os.path.split(f.name)[1]
 cdostr = ('cdo sub ' + f.name + ' -timmean -seldate,' + date_range +
 ' -selvar,' + var.name + ' ' + f.name + ' ' + outfile)
 os.system(cdostr)

 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)
 var.delete(f)

 # delete the old file
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)
 ens.squeeze()
 return ens

[docs]def my_operator(ensemble, my_cdo_str="", output_prefix='processed_', delete=False):
 """
 Apply a customized cdo operation to all files in ens.

 For each file in ens the command in my_cdo_str is applied and an output
 file appended by 'output_prefix' is created.

 Optionally delete the original input files if delete=True.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 my_cdo_str : str
 The (chain) of cdo commands to apply. Defined variables which can
 be used in my_cdo_str are: model, experiment, realization, variable,
 infile, outfile

 output_prefix : str
 The string to prepend to the processed filenames.

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory.

 EXAMPLES

 1. Do an annual mean::

 my_cdo_str = 'cdo -yearmean {infile} {outfile}'
 my_ens = cd.my_operator(ens, my_cdo_str, output_prefix='annual_')

 2. Do a date selection and time mean::

 my_cdo_str = 'cdo sub {infile} -timmean -seldate,1991-01-01,2000-12-31 {infile} {outfile}'
 my_ens = cd.my_operator(ens, my_cdo_str, output_prefix='test_')

 """
 ensem = copy.deepcopy(ensemble)
 if delete is True:
 # Take a copy of the original ensemble before we modify it below
 del_ens = copy.deepcopy(ensemble)

 # loop over all files
 for f in ensem.objects('ncfile'):
 outfile = output_prefix + os.path.split(f.name)[1]
 values = f.getDictionary()
 values['infile'] = f.name
 values['outfile'] = outfile
 cdostr = my_cdo_str.format(**values)
 ex = os.system(cdostr)
 var = f.parent

 # if the operation is unsuccessful, delete the new file
 if ex != 0:
 try:
 print 'Failed processing... deleting ' + outfile
 os.system('rm -f ' + outfile)
 except:
 pass
 else:
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=f.start_date, end_date=f.end_date)
 var.add(ncfile)
 var.delete(f)

 if delete is True:
 del_ens_files(del_ens)

 ensem.squeeze()
 return ensem

[docs]def del_ens_files(ensem):
 """ delete from disk all files listed in ensemble ens"""
 for infile in ensem.objects('ncfile'):
 delstr = 'rm ' + infile.name
 os.system(delstr)
 infile.parent.delete(infile)
 ensem.squeeze()

[docs]def trends(ensemble, start_date, end_date, delete=False):
 """
 Compute linear trends over the period between start_date and end_date,
 for each file in ens.

 The resulting output is written to file, named with with the correct
 date range, and the original input files are deleted if delete=True.

 Parameters

 ens : cmipdata Ensemble
 The ensemble on which to do the processing.

 start_date : str
 Start date for the output file with format: YYYY-MM-DD
 end_date : str
 End date for the output file with format: YYYY-MM-DD

 delete : boolean
 If delete=True, delete the original input files.

 Returns

 ens : cmipdata Ensemble
 An updated ensemble object, containing the names of the newly
 processed files.

 The processed files are also written to present working directory,
 and begin with "slope_" and "intercept_".

 EXAMPLES

 1. Select data between 1 January 1980 and 31 December 2013::

 ens = cd.trends(ens, start_date='1979-01-01', end_date='2013-12-31')

 """

 # copy the ens object
 ens = copy.deepcopy(ensemble)

 # set up the dates in cmip5 format
 date_range = start_date + ',' + end_date
 start_yyyymm = start_date.replace('-', '')[0:6] # convert date format
 end_yyyymm = end_date.replace('-', '')[0:6]

 # loop over all files
 for f in ens.objects('ncfile'):
 var = f.parent
 # check the date range is within the file range
 if f.start_date <= start_yyyymm and f.end_date >= end_yyyymm:
 outfile = f.getNameWithoutDates() + '_' + start_yyyymm + '-' + end_yyyymm + '.nc'
 print 'time limiting...'
 cdostr = ('cdo trend -seldate,' + date_range + ' ' +
 '-selvar,' + var.name + ' ' + f.name + ' ' +
 'intercept_' + outfile + ' ' +
 'slope_' + outfile)

 ex = os.system(cdostr)

 # if the trands are not successful the new file is deleted
 if ex != 0:
 try:
 print 'Failed processing... deleting ' + outfile
 os.system('rm -f ' + outfile)
 os.system('rm -f intercept_' + outfile)
 os.system('rm -f slope_' + outfile)
 except:
 pass
 else:
 ncfile = dc.DataNode('ncfile', outfile, parent=var, start_date=start_yyyymm, end_date=end_yyyymm)
 var.add(ncfile)
 ncfile = dc.DataNode('ncfile', 'intercept_' + outfile, parent=var, start_date=start_yyyymm, end_date=end_yyyymm)
 var.add(ncfile)
 ncfile = dc.DataNode('ncfile', 'slope_' + outfile, parent=var, start_date=start_yyyymm, end_date=end_yyyymm)
 var.add(ncfile)
 var.delete(f)

 # delete the old file
 if delete is True:
 delstr = 'rm ' + f.name
 os.system(delstr)

 return ens

 © Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

_modules/classes.html

 Navigation

 		
 index

 		
 modules |

 		cmipdata 0.6 documentation »

 		Module code »

 Source code for classes

"""
classes
=======

The classes module provides one classes and three functions.
The class: DataNode

The core functionality of :mod:`cmipdata` is to organize a large number of
model output files into a logical structure so that further processing
can be done. Data is organized into a tree-like structure using the class
DataNode as the nodes of a tree. The entire tree structure will be referred
to as an ensemble. At each level of the tree the level is specified by the
genre attribute.

Various methods exist to interact with the ensemble, and its
constituent elements.

The :func:`mkensemble` function is used to create :class:`Ensemble`
objects, while :func:`match_ensembles` finds models common to two ensembles and
:func:`match_reliazations` matches realizations between two ensembles. Once
created, an ensemble can be used to harness the power of
the :mod:`preprocessing_tools` to apply systematic operations to all files.

.. moduleauthor:: Neil Swart <neil.swart@ec.gc.ca>
"""

import os
import glob
import copy

[docs]class DataNode(object):
 """ Defines a cmipdata DataNode.

 Attributes

 genre : string
 The attribute of DataNode
 name : string
 The name of the particular genre
 children : list
 List of DataNodees of genre beneath the current DataNode
 parent : DataNode
 for genre 'ensemble' the parent is None
 start_date : string
 for genre 'file'
 end_date : string
 for genre 'file'
 realm : string
 for genre 'variable' contains the realm of the varaible

 """

 def __init__(self, genre, name, parent=None, **kwargs):
 """ Possible keys in kwargs:
 'start_date'
 'end_date'
 'realm'
 """
 self.genre = genre
 self.name = name
 self.children = []
 self.parent = parent
 for k,v in kwargs.items():
 setattr(self, k, v)

[docs] def add(self, child):
 """ Add DataNode to children

 Parameters

 child : DataNode
 """
 self.children.append(child)

[docs] def delete(self, child):
 """Delete DataNode from children

 Parameters

 child : DataNode
 """
 self.children.remove(child)

[docs] def getNameWithoutDates(self):
 """ Return string name with the dates removed if present

 Returns

 string
 """
 return self.name.replace('_' + self.start_date + '-' + self.end_date + '.nc', "")

[docs] def getChild(self, input_name):
 """ Returns DataNode given the name of the DataNode
 if it is in children

 Parameters

 input_name : string

 Returns

 DataNode : Returns None if the DataNode is not in children
 """
 for child in self.children:
 if child.name == input_name:
 return child
 return None

[docs] def mer(self):
 """Returns a generator containing lists of length 3
 with the DataNode genre:'realization'
 the DataNode genre:'experiment'
 string model-experiment-realization

 Returns

 generator
 """
 for obj in self.objects('realization'):
 yield [obj, obj.parent,
 obj.parent.parent.name + '-' +
 obj.parent.name + '-' +
 obj.name]

[docs] def lister(self, genre, unique=True):
 """ Returns a list of names of a particular genre

 Parameters

 genre : string
 the genre of returned list
 unique: boolean
 if True removes duplicates from the list
 Return

 list of strings
 """
 def alist(item, genre):
 if item.genre == genre:
 yield item.name
 else:
 for child in item.children:
 for value in alist(child, genre):
 yield value
 if unique:
 return list(set(alist(self, genre)))
 else:
 return list(alist(self, genre))

[docs] def objects(self, genre):
 """ Returns a generator for a DataNode of a particular genre

 Parameters

 genre : string
 the genre of returned generator

 Return

 generator of DataNodees
 """
 def alist(item, genre):
 if item.genre == genre:
 yield item
 else:
 for child in item.children:
 for value in alist(child, genre):
 yield value
 return list(alist(self, genre))

[docs] def parentobject(self, genre):
 """ Returns the parent DataNode of a particular genre

 Parameters

 genre : string
 the genre of returned DataNode

 Return

 DataNode
 """
 def check(item):
 if item.genre == genre:
 return item
 else:
 return check(item.parent)
 return check(self)

 def _checkfile(self):
 """ Removes files from ensemble if they are not in the directory
 """
 for f in self.objects('ncfile'):
 if not os.path.isfile(f.name):
 f.parent.delete(f)

[docs] def squeeze(self):
 """ Remove any empty elements from the ensemble
 """
 self._checkfile()
 def sq(node):
 if node.children == [] and node.genre != 'ncfile':
 delete = node
 if node.genre != 'ensemble':
 node = node.parent
 node.delete(delete)
 print 'Removing ' + delete.name + ' from ' + delete.parent.name
 sq(node)
 for n in node.children:
 sq(n)
 for n in self.children:
 sq(n)

[docs] def getDictionary(self):
 """Returns a dictionary which
 has the genres and their names for all the ancestors of
 the DataNode
 """
 node = self
 values = {}
 while node.genre != 'ensemble':
 values[node.genre] = node.name
 node = node.parent
 return values

[docs] def sinfo(self, listOfGenres=['variable', 'model', 'experiment', 'realization', 'ncfile']):
 """ Returns the number of models, experiments, realizations, variables and files
 in the DataNode"""
 print "This ensemble contains:"
 for key in listOfGenres:
 if key == 'realization':
 print str(len(list(self.objects(key)))) + " " + key + "s"
 else:
 print str(len(self.lister(key))) + " " + key + "s"

[docs] def fulldetails(self):
 """ prints information about the number of models,
 experiments, variables and files ina DataNode tree.
 """
 for model in self.children:
 print model.name + ':'
 for experiment in model.children:
 print '\t' + experiment.name
 for realization in experiment.children:
 print '\t\t' + realization.name
 for variable in realization.children:
 print '\t\t\t' + variable.name
 for filename in variable.children:
 print '\t\t\t\t' + filename.name

[docs] def fulldetails_tofile(self, fi):
 """ prints information about the number of models,
 experiments, variables and files ina DataNode tree.
 """
 with open(fi, 'w') as f:
 for model in self.children:
 f.write(model.name + ':\n')
 for experiment in model.children:
 f.write('\t' + experiment.name + '\n')
 for realization in experiment.children:
 f.write('\t\t' + realization.name + '\n')
 for variable in realization.children:
 f.write('\t\t\t' + variable.name + '\n')
 for filename in variable.children:
 f.write('\t\t\t\t' + filename.name + '\n')

[docs]def mkensemble(filepattern, experiment='*', prefix='', kwargs=''):
 """Creates and returns a cmipdata ensemble from a list of
 filenames matching filepattern.

 Optionally specifying prefix will remove prefix from each filename
 before the parsing is done. This is useful, for example, to remove
 pre-pended paths used in filepattern (see example 2).

 Once the list of matching filenames is derived, the model, experiment,
 realization, variable, start_date and end_date fields are extracted by
 parsing the filnames against a specified file naming convention. By
 default this is the CMIP5 convention, which is::

 variable_realm_model_experiment_realization_startdate-enddate.nc

 If the default CMIP5 naming convention is not used by your files,
 an arbitary naming convention for the parsing may be specified by
 the dicionary kwargs (see example 3).

 Parameters

 filepattern : string
 A string that by default is matched against all files in the
 current directory. But filepattern could include a full path
 to reference files not in the current directory, and can also
 include wildcards.

 prefix : string
 A pattern occuring in filepattern before the start of the official
 filename, as defined by the file naming converntion. For instance,
 a path preceeding the filename.

 EXAMPLES

 1. Create ensemble of all sea-level pressure files from the historical experiment in
 the current directory::

 ens = mkensemble('psl*historical*.nc')

 2. Create ensemble of all sea-level pressure files from all experiments in a non-local
 directory::

 ens = mkensemble('/home/ncs/ra40/cmip5/sam/c5_slp/psl*'
 , prefix='/home/ncs/ra40/cmip5/sam/c5_slp/')

 3. Create ensemble defining a custom file naming convention::

 kwargs = {'separator':'_', 'variable':0, 'realm':1, 'model':2, 'experiment':3,
 'realization':4, 'dates':5}

 ens = mkensemble('psl*.nc', **kwargs)

 """
 # find all files matching filepattern
 filenames = sorted(glob.glob(filepattern))

 if kwargs == '':
 kwargs = {'separator': '_', 'variable': 0, 'realm': 1, 'model': 2, 'experiment': 3,
 'realization': 4, 'dates': 5}

 # Initialize the ensemble object
 ens = DataNode('ensemble', 'ensemble')

 # Loop over all files and
 for name in filenames:
 name = name.replace(prefix, '')
 variablename = name.split(kwargs['separator'])[kwargs['variable']]
 realm = name.split(kwargs['separator'])[kwargs['realm']]
 modelname = name.split(kwargs['separator'])[kwargs['model']]
 experiment = name.split(kwargs['separator'])[kwargs['experiment']]
 realization = name.split(kwargs['separator'])[kwargs['realization']]
 dates = name.split(kwargs['separator'])[kwargs['dates']]
 start_date = name.split(kwargs['separator'])[kwargs['dates']].split('-')[0]
 end_date = name.split(kwargs['separator'])[kwargs['dates']].split('-')[1].split('.')[0]

 # create the model if necessary
 m = ens.getChild(modelname)
 if m is None:
 m = DataNode('model', modelname, parent=ens)
 ens.add(m)

 # create the experiment if necessary
 e = m.getChild(experiment)
 if e is None:
 e = DataNode('experiment', experiment, parent=m)
 m.add(e)

 # create the realization if necessary
 r = e.getChild(realization)
 if r is None:
 r = DataNode('realization', realization, parent=e)
 e.add(r)

 # create the variable if necessary
 v = r.getChild(variablename)
 if v is None:
 v = DataNode('variable', variablename, parent=r, realm=realm)
 r.add(v)

 filename = (prefix + name)
 # create the file if necessary
 f = v.getChild(filename)
 if f is None:
 f = DataNode('ncfile', filename, parent=v, start_date=start_date, end_date=end_date)
 v.add(f)

 ens.sinfo()
 print('\n For more details use ens.fulldetails() \n')
 return ens

[docs]def match_models(ens1, ens2, delete=False):
 """
 Find common models between two ensembles.

 Parameters

 ens1 : cmipdata ensemble
 ens2 : cmipdata ensemble
 the two cmipdata ensembles to compare.

 Returns

 ens1 : cmipdata ensemble
 ens2 : cmipdata ensemble
 two ensembles with matching models.

 """
 # get lists of the models in both ensembles
 ens1_modelnames = ens1.lister('model')
 ens2_modelnames = ens2.lister('model')

 # find the model misses
 model_misses = set(ens1_modelnames).symmetric_difference(ens2_modelnames)

 # remove the models that are not in both ensembles
 for name in model_misses:
 m = ens1.getChild(name)
 if m is not None:
 if delete:
 files = m.lister('ncfile')
 for f in files:
 os.system('rm -f ' + f)
 print 'deleting %s from ens1' % (m.name)
 ens1.delete(m)

 m = ens2.getChild(name)
 if m is not None:
 if delete:
 files = m.lister('ncfile')
 for f in files:
 os.system('rm -f ' + f)
 print 'deleting %s from ens2' % (m.name)
 ens2.delete(m)

 ens1.squeeze()
 ens2.squeeze()
 return ens1, ens2

[docs]def match_realizations(ens1, ens2, delete=False):
 """
 Find common realizations between two ensembles.

 Parameters

 ens1 : cmipdata ensemble
 ens2 : cmipdata ensemble
 the two cmipdata ensembles to compare.

 Returns

 ens1 : cmipdata ensemble
 ens2 : cmipdata ensemble
 two ensembles with matching realizations.
 """

 mer_e1 = list(ens1.mer())
 mer_e2 = list(ens2.mer())

 # make lists of strings of form: model-experiment-realization
 mer_string_e1 = []
 mer_string_e2 = []
 for n in mer_e1:
 mer_string_e1.append(n[2])
 for n in mer_e2:
 mer_string_e2.append(n[2])

 # find matching and non-matching models
 matches = set(mer_string_e1).intersection(mer_string_e2)
 misses = set(mer_string_e1).symmetric_difference(mer_string_e2)

 print 'misses:', len(misses), 'matches:', len(matches)

 # delete realizations not in both ensembles
 def deleting(items):
 for nm in items:
 if nm[2] in misses:
 if delete:
 files = nm[0].lister('ncfile')
 for f in files:
 os.system('rm -f ' + f)
 nm[1].delete(nm[0])
 deleting(mer_e1)
 deleting(mer_e2)
 ens1.squeeze()
 ens2.squeeze()

 return ens1, ens2

if __name__ == "__main__":
 pass

 © Copyright 2014-2016, Neil Swart.
 Created using Sphinx 1.3.5.

